Rapid Pneumothorax Screening on Chest CT

Prompt diagnosis and quantitation of pneumothorax impact decisions pertaining to patient management. The purpose of our study was to develop and evaluate the accuracy of a deep learning (DL)-based image classification program for detection of pneumothorax on chest CT. In an IRB approved study, an eight-layer convolutional neural network (CNN) using constant-size (36*36 pixels) 2D image patches was trained on a set of 80 chest CTs, with (n = 50) and without (n = 30) pneumothorax. Image patches were classified based on their probability of representing pneumothorax with subsequent generation of 3D heat-maps. The heat maps were further defined to include 1) pneumothorax area size, 2) relative location of the region to the lung boundary, and 3) a shape descriptor based on regional anisotropy. A support vector machine (SVM) was trained for classification. We assessed performance of our program in a separate test dataset of 200 chest CT examinations, with (160/200, 75%) and without (40/200, 25%) pneumothorax. Data were analyzed to determine the accuracy, sensitivity, specificity. The subject-wise sensitivity was 100% (all 160/160 pneumothoraces detected) and specificity was 82.5% (33 true negative/40). False positive classifications were primarily related to emphysema and/or artifacts in the test images. This deep learning-based program demonstrated high accuracy for automatic detection of pneumothorax on chest CTs. By implementing it on a high-performance computing platform and integrating the domain knowledge of radiologists into the analytics framework, our method can be used to rapidly pre-screen large numbers of cases for presence of pneumothorax, a critical finding.

Related publications:

https://www.sciencedirect.com/science/article/abs/pii/S0720048X19303420

News coverage:

https://theimagingwire.com/news/ed-h-index-qure-ai-qa-radiology-corporatization

https://www.auntminnie.com/index.aspx?sec=log&URL=https%3a%2f%2fwww.auntminnie.com%2findex.aspx%3fsec%3dsup%26sub%3daic%26pag%3ddis%26ItemID%3d120691%26wf%3d7612

https://blogs.nvidia.com/blog/2018/02/26/ai-radiology-machine-learning-global-impact-awards/